sitemap | contact us
      
 
  Book Series
  Journals
  Book Proposal Form
 
  Using Published Material
  Rights and Permissions
  Examination Copies
   
   
  List of Publishers
  Bargains
   
   
  Services
   
   
  About Narosa
  History
  Mission
  Group Companies
  Our Strength
  Alliances
   
   
   
 
view in print mode
Higher-Order Systems in Classical Mechanics
Author(s): B. Talukdar, U. Das

ISBN:    978-81-7319-845-8 
E-ISBN:   
Publication Year:   2008
Pages:   236
Binding:   Hard Back
Dimension:   185mm x 240mm
Weight:   650



About the book

Higher-order Systems in Classical Mechanics provides a valuable account of the problems in Newtonian mechanics characterized by higher-order Lagrangians which play a role in diverse areas of physics ranging from generalized electrodynamics to string models of elementary particles. In addition to the usual treatment of the direct problem of variational calculus, the solution of the inverse problem is also discussed with special attention to the existence of Lagrangian and Hamiltanian representations of ordinary and partial differential equations. Starting from the traditional treatment of classical mechanics, the authors make a smooth transition to topics like Hamiltonian formulation and Hamilton-Jacobi theory of degenerate higher-order systems. Addressing, in particular, the interest of physicists, equal emphasis is given on both point- and continuum mechanics. As an interesting curiosity, it is demonstrated that Lagrangians with fractional derivatives can bring non-conservative forces within the framework of action principle. A comprehensive introduction is presented for studying the variational/Noether symmetries of dynamical systems.



Table of Contents

Preface / Lagrangian Mechanics: Higher-order Systems / Hamiltonian Mechanics / Hamilton-Jacobi (H-J) Theory / Theory of Classical Fields I / Theory of Classical Fields II / Symmetries and Conservation Laws / Appendix A1: Poincaré Lemma / Appendix A2: Inverse Variational Problem / Appendix A3: Lagrangian and Hamiltonian Mechanics Using Fractional Calculus / Appendix B: Hamilton’s Equations for Constrained System / Subject Index / Author Index.




Audience

Advanced Graduate Students & Researchers in Theoretical Physics and Applied Mathematics


CLICK HERE


Group
| Companies | Mission | Strength | Values | History | Contact us
© Narosa Publishing House